
Wiping the smile off your base (correlation curve)

Ed Parcell, Derivative Fitch∗

James Wood, Derivative Fitch

21 June 2007

Abstract

We discuss problems with interpolating and extrapolating base correlation curves and

examine the pricing of CDO tranches with non-standard subordination levels. We intro-

duce an alternative risk measure, the expected loss of equity tranches. We calculate upper

and lower boundaries on “base EL”, and set out the behaviours that base EL must obey.

We investigate interpolation schemes that best avoid model arbitrage. We also look at

the calculated prices and sensitivities for tranches using these different methods.

This paper is intended to be a practical explanation of methodologies used by Derivative

Fitch in its RAP CD synthetic CDO pricing tool. For our introduction to the underlying

concept of looking at the expected loss of equity tranches, we are grateful for discussions with

a number of market participants, notably Jon Gregory.

1 Introduction

In 2003, Andersen, Sidenius and Basu[2] introduced the 1-factor model for calculating prices

and sensitivities of synthetic CDO tranches. This allowed a move away from time-consuming

Monte Carlo methods, which in turn caused correlation to be viewed as an implied parameter,

rather than an exogenously set parameter.

The initial approach, “tranche correlation”, implied a single correlation parameter for each

tranche in the iTraxx and CDX indices. One problem with the use of tranche correlation is

that it is not obvious how to interpolate between tranche correlations - given correlations for
∗The views, thoughts and opinions expressed in this paper are those of the authors in their individual
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3%-6% and 6%-9% tranches, it is hard to justify what correlation should be used to price a

5.4%-7.0% tranche, say. Worse, during the May 2005 correlation crisis, correlations for some

mezzanine tranches ceased to exist - no correlation parameter would give correct market prices.

Base correlation, introduced by McGinty et al[6], implies correlations for various base (i.e.

equity) tranches, pricing mezzanine and senior tranches as the difference of two base tranches.

Correlations at standard strikes (e.g. 3%, 6%, 9%, 12%, 22% on iTraxx Europe1) can be found

as a bootstrap. The approach makes pricing non-standard tranches easier. Using the example

above, the 5.4% and 7.0% base correlations can be interpolated from the 3%, 6% and 9% base

correlations implied from market prices.

However, some care is needed with this interpolation. The price of a tranche is very sensitive

to the slope of the base correlation curve. In some interpolation schemes, the slope can change

rapidly around control points. So even though we know base correlation at 6%, the relative

value of a 5.9%-6.0% tranche compared to a 6.0%-6.1% tranche will be very sensitive to the

interpolation method chosen, and may even generate arbitrages in the model.

Extrapolation outside the 3%-22% range on the iTraxx index or the 3%-30% range on the

CDX index is even more dangerous. Different extrapolation methods can give very different

prices for junior tranches, and it is easy to accidentally generate arbitrages in senior tranches.

Some researchers have looked at various skew models. Examples include the NIG model[4],

random factor loading[1] and stochastic correlation models[3]. Skew models are designed to

attempt to allow a single set of inputs that fit market prices at all strikes. Typically these

parameterizations are multi-dimensional, and, unlike base correlations, it is not possible to

solve for them via a bootstrap. They do not necessarily fit well to market prices, and often it

is only possible to fit to a subset of the 5 available prices - the extra degrees of freedom do not

greatly increase the set of attainable tranche prices. These models are arbritrage-free in the

sense that more senior tranches are guaranteed to have lower risk. Their downside is that there

is not one unique distribution that best fits the market, so day-to-day consistency of pricing

remains a problem.

A separate question is how to use base correlations implied for indices to value bespoke

asset pools. This is a methodology that lies outside the scope of a model. Commonly used

techniques include expected loss mapping and spread matching. We do not deal with it further

in this paper.
1The two best known credit indices have different tranches – 0%-3%, 3%-6%, 6%-9%, 9%-12%, 12%-22%

on the iTraxx, and 0%-3%, 3%-7%, 7%-10%, 10%-15%, 15%-30% on the CDX NA IG. Rather than clumsily
attempt to refer to both, we shall use only the iTraxx Europe strikes in this paper, and understand that the
same analysis applies to the CDX NA IG index.
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The remainder of this paper is structured as follows: In section 2 we briefly describe the

1-factor copula, and describe the relation between base correlation and expected loss of base

tranches. In section 3 we give results for various methods of interpolating/extrapolating base

correlation, and their advantages and disadvantages. In section 4 we outline the base expected

loss approach, and give results for various methods of interpolating the base expected loss

curve. In section 5 we look at the effect on price and sensitivities of different methods. Section

6 is a conclusion. In Appendix A we give details of our shape-preserving interpolation method.

2 The 1-factor Gaussian copula

We use the standard formulation of the 1-factor Gaussian copula. In this model, the default of

each obligor is conditionally independent given a level of state risk, M , with default occurring

if the latent variable

Xi =
√

ρM +
√

1− ρεi

is less than some threshold, constructed to fit market CDS prices. M and each of the εi are

taken to be independent normally distributed random variates.

Andersen, Sidenius and Basu[2] and Gregory and Laurent[5] give detailed descriptions of

calculation of thresholds, cashflows and PVs. For completeness, and to fix notation, we sum-

marize some of the values that can be obtained from the model. The model allows calculation

of conditional, independent default probability for each obligor i at time t, qi(t|M). These val-

ues are used to calculate the probability distribution of loss (as a fraction of the pool notional)

occurring at time t, given state risk:

P
(

Loss(t) =
l × LU

PN

∣∣∣∣ M

)
(1)

where LU is a loss unit chosen so that potential losses can reasonably be represented as integer

numbers of loss units of loss, and PN is the pool notional, the sum of notionals of the underlying

obligors. Parcell[7] gives details of relaxing the restriction on losses on default so that deals

with inhomogenous notional and recovery rate can be priced without losses in model speed.
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2.1 Valuing CDO tranches

The loss distribution P(Loss(t) = •|M) allows calculation of the expected loss of a 0-x base

tranche at any time t:

E[min(Loss(t), x)] =
∫ ∞

−∞
φ(m)

∑
i

P
(

Loss(t) =
i× LU

PN

∣∣∣∣ M = m

)
min

[
i× LU

PN
, x

]
dm (2)

By summing over the coupon dates t1, t2, . . . , tM , we can calculate the expected (discounted)

loss paid by the protection seller on an a-b tranche having correlation ρ, EL(a, b; ρ) and the

value of a premium of 1 basis point paid by the protection buyer, Prem01(a, b; ρ), and hence

the present value of buying protection on an a-b tranche, PV (a, b):

EL(0, x; ρx) =
∑

j

(E[min(Loss(tj+1), x)]− E[min(Loss(tj), x)])× df
(

tj + tj+1

2

)
(3)

Prem01(0, x; ρx) = 0.0001×
∑

j

(x− E[min(Loss(tj), x)])× (tj − tj−1)× df(tj) (4)

PV (a, b) = EL(0, b; ρb)− EL(0, a; ρa)

− PREM × [Prem01(0, b; ρb)− Prem01(0, a; ρa)]−Upfront (5)

where PREM is the premium in basis points paid by the protection buyer and Upfront is the

value of any payment made at the start of the deal.

2.2 Boot-strapping base correlations

One of the attractions of the base correlation approach is that we can boot-strap base corre-

lations. By that we mean that from the market we can calibrate a base correlation for each

strike in turn, rather than have to solve for all of them simultaneously using a multi-dimensional

solver as in a skew model. We outline the calibration process here.

We look at the 0%-3% tranche first. We know that the PV when entering a fair swap is 0.

Also, we know that the expected discounted loss and premium leg of the 0%-0% base tranche

is 0. So equation (5) reduces to:

0 = EL(0, 3%; ρ3%)− PREM × Prem01(0, 3%; ρ3%)−Upfront (6)

The premium and upfront can be observed in the market, so the only unknown in this equation

is ρ3%, and we can solve for it numerically, using a 1-dimensional solver.
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Having solved for ρ3%, we can look at the 3%-6% tranche. Again, we know that the PV of

the fair swap in the market is 0. So equation (5) gives:

0 = EL(0, 6%; ρ6%)− EL(0, 3%; ρ3%)

− PREM × [Prem01(0, 6%; ρ6%)− Prem01(0, 3%; ρ3%)]−Upfront (7)

We already know ρ3% from solving equation (6), and we know the market premium and upfront.

Therefore the only unknown in this equation is ρ6%, and we can solve for it numerically.

We continue like this up the capital structure, solving for ρ9%, ρ12% and ρ22%. At the

end of this process we have a set of base correlations calibrated to the market tranche prices

of an index pool at a particular maturity. Shelton[9] gives details on extending this to make

correlation a function of time, to fit multiple maturities simultaneously.

3 Interpolating the base correlation curve

We have used boot-strapping to solve for the base correlation at 5 strikes. We now turn our

attention to pricing tranches with arbitrary attachment point, a, and detachment point, b.

The market appears to imply that implied correlation for equity tranches increases smoothly

with the detachment point of the tranche. This suggests that a sensible way to proceed is to

interpolate or extrapolate from our 5 known points to determine ρa and ρb. We look at the

effect of using different methods for doing this. We use this approach in our model.

3.1 Linear interpolation

The simplest method of interpolation is to use linear interpolation to determine ρx on tranches

between 3% and 22%. To determine ρx outside this region, there are many potential choices

of extrapolation strategy. Here are a few:

• Continue the gradient of the last line segment i.e. linearly extrapolate from the last two

points

• Set the correlation at the 0% strike to be 0%, and the 100% strike to be 100%.

• Set the correlations at 0% and 100% to be some other value.

Each extrapolation strategy has difficulties. It is hard to defend the arbitrary choice of

correlations at 0% and 100%. On the other hand, continuing the gradient of the last line
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segment can give correlations below 0% for junior tranches or above 100% for senior tranches.

Capping and flooring ρx to keep it in the range [0%, 100%] introduces a sudden change in the

gradient of ρx at an arbitrary point.

Here we illustrate the first strategy – linearly extrapolating from the last two points. For-

mally, given ρ at a set of strikes x0, x1, . . . , xk, we determine ρ at an arbitrary point using:

ρx =


ρx0 + x−x0

x1−x0
(ρx1 − ρx0) if 0 ≤ x < x0

ρxi
+ x−xi

xi+1−xi
(ρxi+1 − ρxi

) if xi ≤ x < xi+1

ρxk−1 + x−xk−1
xk−xk−1

(ρxk
− ρxk−1) if x ≥ xk

(8)

This gives us the base correlation curve shown in figure 1. This curve, and all examples in

this paper, were calculated using data for the iTraxx 5 year index on 8 May 2007.

Figure 2 shows the fair spreads of thin tranches at various points in the capital structure

implied by the linearly interpolated/extrapolated base correlation curve. Two indications of

arbitrage can be seen.

First, at 9%, and again at 12%, the fair spread increases. That is, tranches with greater

subordination are considered riskier by this model. Clearly this is inconsistent with the fact

that any increase in subordination decreases risk. The reason that this occurs is that pricing

is very sensitive to the gradient of the base correlation curve. The sudden changes in gradient

given by linear interpolation around control points such as 9% and 12% gives a sudden change

in the price, or fair spread, of tranchlets. Where the gradient change causes an increase in fair
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Figure 1: Linearly interpolated/extrapolated base correlation curve
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Figure 2: Fair spreads for tranchlets with width 0.5% at various points on the capital structure.

spread larger than the decrease due to increasing subordination, there will be arbitrages in the

model. This is not a trading opportunity; the model is simply inconsistent with itself between

strikes. We can reduce this arbitrage by using an interpolation method that is smoother around

control points and has equal gradient on either side of them.

Second, above 23% the fair spread becomes negative. This is clearly impossible, and in-

dicates an arbitrage in the model. Again, the reason this happens is that the change in base

correlation is moving prices more than the increase in subordination is; the base correlation

curve is too steep above 22%. This can be fixed by choosing a different extrapolation method

for base correlation, but we must still be careful, because when extrapolating base correlation

it is not clear whether it will result in such arbitrages.

Linear extrapolation is very easy to set up. On the downside it has serious flaws: mis-

pricing very senior tranches, odd relative prices of some mezzanine tranchlets, and possible

problems with invalid correlations. A better method is obviously needed.

3.2 Cubic spline interpolation

The requirement for smooth interpolation at control points suggests using a spline for interpo-

lation.

A cubic spline is a piecewise cubic, constructed to fit a set of control points, so that it is

continuous and has continuous first and second derivatives everywhere. It has two degrees of

freedom – the second derivatives at each end point. Setting both of these equal to zero gives

the natural spline. For more information on splines, we refer to Numerical Recipes in C++[8].
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Outside the 3%-22% region, it is still not clear what base correlations should be used. Here

we show the effects of extrapolating linearly, using the gradients of the spline at 3% and 22%.

This keeps the derivative of base correlation smooth, avoiding some arbitrage problems, but

we still have the possibility of moving outside the 0-100% range for correlation.

Figure 3 shows the base correlation curve and fair spreads using this interpolation method.

We note that in this example (which has fairly large tranchlets of width 0.5%), we avoid the

arbitrages of having tranchlets with negative value, or more value than more junior tranchlets.

However, we cannot guarantee this will always be the case without actually pricing all tranchlets

and detecting this problem.

Spline interpolation is about as far as it is possible to go with interpolation on base corre-

lation curves. There are undoubtedly fancier methods of interpolating, but the core problem

remains that it is not possible to distinguish an arbitrage-free base correlation curve from an

arbitragable one without checking every possible tranchlet price. This is difficult even for a

single set of index prices on a single day, let alone to show for a particular interpolation method

in the general case. For that, we need to look at interpolating on a fundamentally different

risk-measure than base correlation.
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Figure 3: Left: Base correlation curve using a cubic spline for interpolation, and linear extrap-
olation, based on the gradient of the spline at 3% and 22% Right: Fair spreads for tranchlets
with width 0.5% at various points on the capital structure, using this base correlation curve.
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4 Base expected loss

Base correlation is preferable to tranche correlation because it allows interpolation and ex-

trapolation from market-implied correlations and thus allows CDOs with non-standard sub-

ordinations to be priced. The reason for this is that the base correlation approach only deals

with correlations of base tranches, making ρ a function of only one variable. By contrast,

tranche correlation requires ρ to be considered as a function of both the attachment point and

detachment point of a tranche. In either approch, interpolation and extrapolation have to be

performed from only 5 data points - on the iTraxx ρ3%, ρ6%, ρ9%, ρ12% and ρ22% for base

correlation and ρ0%,3%, ρ3%,6%, ρ6%,9%, ρ9%,12% and ρ12%,22% for tranche correlation. Clearly,

given such sparse data it is easier to use base correlation and interpolate a function of one

variable than a function of two.

However, base correlation still has problems. The base correlation curve is not very intuitive.

Worse, it is easy to implement this approach in a way that permits model arbitrage. Given

base correlations at 3% and 6%, say, it’s not clear what base correlations are allowable at

4.5%. Setting base correlation for 4.5% too high would cause the expected loss of the 0%-4.5%

tranche to be lower than that of the 0%-3% tranche, while too low a base correlation causes

the 0%-4.5% tranche no have higher expected loss than the 0%-6% tranche. It is not clear

whether a particular interpolation method gives a base correlation curve free of such problems

at every point.

We would prefer to retain the “base” approach, dealing only with equity tranches, to allow

us to construct a ‘pricing curve’ to value tranches with non-standard subordinations, but use

a risk measure that makes it easy to keep our interpolation/extrapolation arbitrage-free. One

possible measure is EL(0, x; ρx), the expected discounted loss of each equity tranche, which we

call the base EL curve. We can use boot-strapped base correlations at 3%, 6% etc. to calculate

EL(0, x; ρx) at each of these points.

As we will explain below, it is easy to tell whether a base EL curve is arbitrage-free, so by

ensuring that our interpolation maintains certain key properties, we can avoid arbitrages.

4.1 What do we know about base expected loss?

We know that EL(0, 0; ρ0) = 0 and EL(0, 100%; ρ100%) is just the expected loss of the asset

pool, which is determined by CDS spreads and recovery rates (and not correlation). This means

that calculating EL(0, 2%; ρ2%), for example, is an interpolation, rather than an extrapolation.
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This should give us some extra assurance when pricing tranches with strikes below 3%.

Any base correlation curve implies a base EL curve. This relationship is one-to-one; different

base correlation curves imply different base EL curves. However, not all valid expected loss

surfaces have an associated base correlation curve - there are some arbitrage-free base EL

curves that cannot be generated with the base correlation approach and some base correlation

curves imply base EL curves with arbitrages.

We can perform our interpolation/extrapolation on either the base correlation curve, or on

the expected loss curve EL(0, ·). It is not required that our interpolation/extrapolation be

expressable as a base correlation curve (although it might be helpful in some contexts).

Note that EL(0, x; ρx) decreases as ρx increases - intuitively this is because correlation does

not affect the expected loss on the pool, but increases the probability of extreme large losses

which are truncated.

We can use the fact that EL(0, x; ρx) can be calculated from the distribution of discounted

loss. Considering discounted loss as a continuous quantity we have:

EL(0, x; ρx) =
∫ x

0

P(Loss > t)dt (9)

∴ P(Loss > x) =
∂EL(0, x; ρx)

∂x
(10)

∴ fLoss(x) = −∂2EL(0, x; ρx)
∂x2

(11)

Any probability has to be non-negative. The constraint that P(Loss > x) > 0 gives us that the

first derivative of EL(0, x; ρx) must be positive i.e.the base EL curve must be monotonically

increasing. Violating this constraint gives rise to negative probability densities on the loss

distribution, and hence tranchlets with negative spreads.

Similarly, the constraint fLoss(x) > 0 translates into the requirement that the second deriva-

tive of the base EL curve must be non-positive i.e. the base EL curve must be convex to avoid

the fair spreads of tranchlets increasing with seniority.

4.1.1 Boundaries on interpolated base EL curves

Once we have calculated expected losses at each of the liquid strikes (and also at 0 and 100%),

the fact that base EL curve have to be monotonic and convex can be used to produce constraints

on expected loss interpolations. The bounds we give are not strict, and it is possible for an

interpolation to lie within the bounds but not be arbitrage-free. However, violation of the

bounds indicates that there is certainly a model arbitrage; tranche values outside these bounds
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are not possible.

4.1.2 Lower bound

There are a set of expected losses at various strikes which are increasing and convex, starting

from 0% and going to 100%. These are our control points for interpolation.

Clearly the curve, C, formed by straight lines joining each control point is also increasing

and convex. We will demonstrate that this curve is also the “lowest” convex curve joining

these points.

Consider some continuous interpolated base EL curve that is lower at some point than C.

That is, at some strike x, the expected loss on this curve is below the straight line joining two

control points. Call the strikes of those control points a and b, with a < b. The curve segment

joining x to the control point at a has lower average gradient than the curve segment joining

x to the control point at b. No matter how the curve is shaped, somewhere between a and

x it must have gradient not larger than the average gradient between a and x, say at strike

A. Similarly, somewhere between x and b it must have gradient not smaller than the average

gradient between x and b. We have that A is smaller than B, and the gradient at A is smaller

than the gradient at B, which is not possible if the curve is convex. So any base EL curve

that is anywhere lower than C is not convex, and hence that C is a lower bound for all base EL

interpolations.

Simplistically, any curve that goes below C will have to bend upwards to hit the next control

point, and so will not be convex.

4.1.3 Upper bound

To work out an upper bound, we have to combine several upper bounds. Our base EL curve

is not allowed to violate any of them, so the actual upper bound at each strike is the lowest of

the upper bounds given by these rules:

• The most obvious upper bound is that the expected loss of a tranche can never exceed

the expected loss of the pool, so EL(0, x; ρx) ≤ EL(0, 100%; ρ100%) for all strikes x.

• Also,the loss on a tranche cannot exceed the width of the tranche, and so neither can the

expected loss, giving EL(0, x; ρx) ≤ x.

• Other bounds are more complex. Consider three control points, with strikes a, b and

c. The gradient of the base EL curve must be at least the gradient of the straight line
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joining b and c – if it were lower the base EL curve would fail to be convex in the same

way is the previous section. The gradient of the base EL curve between a and b cannot

be smaller than its gradient at b, so the smallest it can be is the gradient of the line

joining b and c. This gives an upper bound composed by continuing the straight line

segment joining each consecutive pair of control points from the more junior of those

control points.

• Using similar reasoning, another upper bound is the continuation of the straight line

segment joining each consecutive pair of control points for strikes above the more senior

control point.

Unlike the lower bound, which is convex, the upper bound is not, and so is not a feasible

base EL curve. However, it is the envelope of a set of convex functions.

4.1.4 Algebra

Given a set of boot-strapped base ELs, (x0 = 0, y0 = 0), (x0, y0), (x1, y1), . . ., (xn−1, yn−1),

(xn = 1, yn), with EL(0, xi; ρxi
) = yi for i = 0, 1, . . . , n that are monotonic and convex, the

convexity requirement gives us constraints on the interpolated base EL curve:

EL(0, x; ρx) > yj + (yj+1 − yj)
x− xj

xj+1 − xj
if xj < x < xj+1, 0 ≤ j < n (12)

EL(0, x; ρx) < yj−1 + (yj − yj−1)
x− xj−1

xj − xj−1
if xj < x < xj+1, 1 ≤ j < n (13)

EL(0, x; ρx) < yj+1 + (yj+2 − yj+1)
x− xj+1

xj+2 − xj+1
if xj < x < xj+1, 0 ≤ j < n− 1 (14)

4.1.5 Example

Figure 4 shows the bounds on base EL given by market prices on the iTraxx 5 year on 8 May

2007. Figure 5 shows the implied bounds on base correlation given by the base EL bounds.

Note that a base correlation curve contained by these bounds may still fail to be arbitrage-free,

for example if it has a very fast changing gradient at some points.

• The bounds on base correlation in the range 3%-22% are fairly tight. So any interpolation

method that remains arbitrage-free should give similar prices on any tranche in this range.

• The bounds on base correlation or expected loss below the 3% strike are very wide. This

means that there is a lot of uncertainty when pricing or risk-managing deals with strikes
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more junior than this. This could be alleviated by the formation of a liquid tranchlet

market below 3%.

• At a strike of about 1.3% the lower bound on base correlation hits 0%. If a base correlation

below 0% occurred, and we believe there is no theoretical reason why it could not, we

might interpret this as meaning that it is possible that purely idiosyncratic defaults

actually reduce the possibility of systematic defaults. A real life example of this might

be the improvements in corporate governance after Enron’s bankruptcy.

• The bounds on base correlation and expected loss above 22% are reasonably tight, al-

though widening as we move away from 22%.

• The bounds on base correlation above 22% show that a linearly extrapolated base corre-

lation is not feasible.

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

E
xp

ec
te

d 
lo

ss
 o

f 0
-x

%
 tr

an
ch

e 
(%

)

Strike (%)

Figure 4: Bounds on base EL implied by monotonicity and convexity.
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Figure 5: Base correlation bounds implied by bounds on base EL.

4.2 Interpolating the base expected loss curve

The linear interpolations on base EL above give boundaries for base correlation (see figure 5)

and tranche prices. In practice, we would expect the base EL to be a smooth curve. The

reason for this is that loss is (approximately) a continuous random variable, and hence so is

discounted loss, so the cumulative density function never jumps, and equation (10) gives that

the first derivative of the base EL curve is continuous. In addition, any value of loss has a

non-zero probablity density, so from equation (11) we should expect the base EL curve to have

decreasing gradient everywhere.

4.2.1 Spline interpolation

Since we would like to keep our interpolated base EL curve smooth, spline interpolation is an

obvious choice. Figure 6 shows the interpolated base EL curve, and the base correlation curve

implied by the base EL curve, using a natural spline.

It can immediately be seen that the base EL curve is oscillatory, and definitely is not
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Figure 6: Left: Base ELinterpolated using spline interpolation. Right: Base correlation curve
implied with this interpolation method.

monotonically increasing. It will generate significant arbitrages for a wide range of tranches.

It has been said that spline interpolation tends to work well, except when it does not. To

be fair, splines do not guarantee to maintain the monotonicity or convexity of their control

points, and here they do not as the stiffness that gives splines their accuracy forces the curve

to oscillate to hit the control points.

4.2.2 Steffen’s monotonic interpolation

Steffen[10] introduced an interpolation method that guarantees that monotonic sets of control

points will generate a monotonic interpolating curve. The method produces smooth curves,
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Figure 7: Left: Expected loss interpolated using Steffen interpolation. Right: Base correlation
curve implied with this interpolation method.
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Figure 8: Fair spreads for tranchlets with width 0.5% at various points on the capital structure,
using Steffen interpolation on the BaseEL curve.

and has better locality properties than cubic interpolation - small perturbations of control

points tend not to introduce large changes in the interpolation function far away from that

control point. In practice, we have found that the interpolation has a slightly lower order of

accuracy than a cubic spline on various test-cases, but for many uses in financial modelling

this is more than made up for by its preservation of monotonicity.

Figure 7 shows the interpolated base EL curve, and the base correlation curve implied by

the base EL curve, using Steffen interpolation. Compared to using a spline for interpolation,

the expected loss and base correlation curves are smooth, and avoid oscillation.

Figure 8 shows the fair spreads of thin tranches at various points in the capital structure

implied by this interpolated base EL curve. The method works well over most strikes, however,

there is an arbitrage between the fair spreads of the 0%-0.5% and 1%-1.5% tranches - in the

model, the latter pays more, despite having extra subordination. The reason for this is that,

despite its appearance in 7, the interpolated base EL curve is slightly concave near the 0%

strike, as convexity in the control points is not preserved by the Steffen interpolation.

4.2.3 Piecewise quadratic interpolation

We have also looked at other schemes for interpolation to preserve monotonicity and convexity.

We outline one here, giving further details in appendix A.

Our approach is to fit a piece-wise quadratic so it goes through each of the control points.

We choose the gradient at the right extreme of the right-most piece to be half the gradient

between the final two control points. This fixes the quadratic used for interpolation between
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Figure 9: Left: Expected loss interpolated using piecewise quadratic interpolation. Right:
Base correlation curve implied with this interpolation method.

the final two control points. We then choose the gradient of the right extreme of the second

right-most piece to match the left extreme of the right-most piece, which fixes the quadratic

for use between the penultimate two control points.

In our example we found that the curve produced was monotonic and convex, though it

is not guaranteed to be. If the quadratic interpolation function is not monotonic or convex,

this can be detected by the fact that the gradient on the left extreme between two control

points would be smaller than the gradient of the line between those control points. In that

case, we reject that segment, and the one to the right, replace the one to the right with a

different quadratic, and re-start the algorithm. The first derivative will not be continuous at
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Figure 10: Fair spreads for tranchlets with width 0.5% at various points on the capital structure,
using piecewise quadratic interpolation on the BaseEL curve.
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this control point, but this is not a condition for the expected loss curve to be arbitrage free.

There is typically a range of choices of gradient at the right extreme that will produce

monotonic and convex base EL curves, without requiring re-starts. Our choice of gradient is

arbitrary, but usually lies in this range. While different choices in the range will give different

EL curves, in practice we find there is little difference between the EL curves produced.

Figure 9 shows the base EL curve given by this method, and the implied base correlation

curve, and figure 10 shows the fair spreads of various tranchlets. The base EL curve is smooth,

as is the base correlation curve. The base correlation curve turns upwards as it moves from the

3% strike to 0%, which has been observed on some traded tranchlets. The calculated trancelet

prices are monotonically decreasing with strike, indicating the absence of model arbitrages. In

short, we believe this method fixes the various deficiencies in the other methods we have looked

at in this paper.

One problem with fitting a base EL curve below 3% is that the expected loss on the entire

pool is only around 1%, and all our market information comes from significantly higher strikes.

In other words we are applying information from unlikely levels of loss, where systematic risk is

the main driver, to strikes at levels of loss that are very likely to be incurred, where idiosyncratic

risk is more important than systematic risk. In addition, the granularity of defaults may cause

the expected loss curve to be less well approximated by a continuous curve. The upshot is that

market participants who are able to observe tranchlet levels are likely to be significantly better

informed than those who cannot. In absence of this information, one approach is to look at the

range of tranche prices at the 1% level and pick a tranche price based on “trader’s” perception

of idiosyncratic risk. This extra price can the be used to incorporate an extra control point

into the base EL interpolation.

5 Price and sensitivities of a non-standard tranche

Table 1 shows the fair spreads calculated for a 1%-2% tranche and a 4%-5% on the iTraxx

using market data from 8 May 2007. It can be seen that there is a large variation in the fair

spread of the 1%-2% tranche, depending on which extrapolation method is used - the largest

fair spread is 72% greater than the smallest. The variation on the 4%-5% tranche is lower, but

still significant. It is worth noting that each of the 3 different base EL interpolation methods

produce higher fair spreads for the 1%-2% tranche than methods based on base correlation.

This seems to indicate (but not prove) that base correlation should naturally increase below
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Figure 11: Deltas for different spread names. Left: 1%-2% tranche. Right: 4%-5% tranche.

3%.

Method 1%-2% tranche 4%-5% tranche
Linear interpolation on base correlation 523 42.9
Spline interpolation on base correlation 520 42.7

Linear interpolation on base EL 742 50.5
Steffen interpolation on base EL 899 45.0

Piecewise quadratic interpolation on base EL 727 50.5

Table 1: Fair spreads (in basis points) of tranches using different extrapolation methods

Figure 11 shows the credit spread dv01 on each name in the iTraxx pool as a function of

spread for the 1%-2% and 4%-5% tranches as a function of each obligor’s CDS spread. Each

dv01 is calculated as the change in PV of a $10m tranche with a parallel shift CDS spread

movement of 1 basis point. We use a contractual spread of 5% for the 1%-2% tranche, and 40

basis points for the 4%-5% tranche.

The deltas calculated for the 1%-2% tranche show some variation, particularly for very

low or high spread names, again highlighting the danger of extrapolating outside the 3%-22%

region. By comparison, the deltas for the 4%-5% tranche are reasonably stable to the choice

of interpolation method used.

6 Conclusion

In this paper we examined various methods of constructing a base correlation curve through

five points observable from the market. We demonstrated that it is easy to generate model

arbitrages when using base correlation as the fundamental measure of tranche risk, and that
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base correlation curves do not directly indicate whether such arbitrages exist (without pricing

tranchlets). We examined a more intuitive risk measure for tranches - the expected loss of

equity tranches - in which model arbitrage can instantly be observed, and showed the bound-

aries and behaviours which this function must obey. For the iTraxx Europe 8 May 2007 we

constructed base EL curves using three interpolation schemes and for each tested whether the

function behaved acceptably. We noted that quadratic interpolation met all our criteria for an

acceptable base EL curve. Finally we looked at prices of 2 tranchlets using base correlation and

base EL and noted that for the equity tranche, each of the 3 different base EL interpolations

implied that base correlation increases below 3%.
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A Shape-preserving piecewise quadratic interpolation

A set of points (x0, y0), (x1, y1), . . . , (xN , yN ) are given with x0 < x1 < · · · < xN . For i =

1, 2, .., N − 1, let

∆i =
yi+1 − yi

xi+1 − ik
.

For any choice of z0, the function

s(x) = yi + zi(x− xi) +
zi+1 − zi

2(xi+1 − xi)
(x− xi)2 for xi < x < xx+1 (15)

with zi+1 = 2∆i − zi (16)

satisfies s(xi) = yi for i = 0, 1, . . . , N , and is continuous and has a continuous first derivative

on [x0, xN ].

In addition the points satisfy a strict monotonicity constraint,

y0 < y1 < · · · < yN

and a convexity constraint,

xi < xj < xk ⇒ yj > yi +
xj − xi

xk − xi
(yk − yi).

These convexity and monotonicity constraints are equivalent to

0 < ∆N−1 < ∆N−2 < · · · < ∆1 < ∆0.

We require

x < y ⇒ s(x) < s(y) (17)

x < y < z ⇒ s(y) > s(x) +
y − x

z − x
[s(y)− s(x)] (18)

which is equivalent to

0 < zN < zN−1 < · · · < z1 < z0

This is not necessary possible. E.g. consider (0, 0), (1, 1), (2, 2− ε), (3, 2 + ε) for some small
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ε > 0. Then we have

z0 > z1 = 2− z0 ∴ z0 > 1 (19)

z3 = 6ε− z0 > 0 ∴ z0 < 6ε (20)

Clearly it is not possible to simultaneously satisfy these inequalities if ε < 1
6 .

We use the following heuristic to generate s:

• Set zN = 1
2∆N−1.

• Calculate zk for k = N − 1, N − 2, . . ..

• If, for some j, zj > ∆j−1 or zj < ∆j , we use the reduced data set (x0, y0), (x1, t1), . . .,

(xj+1, yj+1), with

zj+1 =
∆j + ∆j+1

2

to generate the curve s for x ≤ xj+1. We retain s for x > xj+1. This will cause a

discontinuity in the first derivative of s at x = xj+1, but ensures s is monotonic and

convex.

• If this choice of zj+1 still causes concavity, we try again with the reduced data set

(x0, y0), (x1, t1), . . ., (xj+2, yj+2), and repeatedly try increasing the reduced data set

until convexity is restored.
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